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Abstract

The paper prescnts a gencral method for the resolution of redundancy that combines the
Jacobian pseudoinverse and augmentation approaches. A direct adaptive control scheme is
developed to generate joint angle trajectories for achieving desired end-effector motion as well
as additional user defined tasks. The scheme ensures arbitrarily small errors between the desired
and the actual motion of the manipulator. Explicit bounds on the errors are cstablished that
are directly related to the mismatch between actnal and estimated psendoinverse Jacobian
matrix, motion velocity and the controller gain. It is shown that the scheme is tolerant of the
mismatch and consequently only it\fr(’q%i;;lf pscudoinverse computations are needed during a
typical robot motion. As a result, the scheme is computationally fast, and can be implemented
for real-time control of redundant robots. A method is incorporated to cope with the robot
singularities allowing the manipulator to get very close or even pass through a singularity while
maintaining a good tracking performance and acceptable joint velocities. Computer simulations
and experimental results are provided in support of the theoretical developments.

1 Introduction o

The dexterity and versatility offered by redundant manipulators allow their utilization for the
performance of complex tasks in practical environments. However, effective utilization of this dex-
terity requires satisfactory resolution of the redundancy and its real-time implementation.

During recent years two main approaches to the resolution of the redundancy have ernerged.
These can be categorized as Jacobian pseudoinverse [1}-[9] and Jacobian augmentation [10]-[14]
approaches. In the pseudoinverse approach, a certain vector lying in the null space of the Jacobian
matrix is utilized for a variety of design objectives. These objectives include optimization of a
performance criterion [2], obstacle avoidance [3], torque optimization [4], and task prioritization
[5]-[6]. A review of pseudoinverse methods is given in [7]. In the augmented Jacobian approach,
an additional Jacobian matrix is defined for the purpose of utilizing the extra degrees of frecdom
offered by redundancy. This matrix is augmented with the end-effector Jacobian matrix to obtain a
square Jacobian matrix, and thus the problem of redundant manipulator control is transformed to

that of a non-redundant manipulator. A method to augment the Jacobian matrix for the purpose
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of optimizing a performance criterion is proposed by Baileinl [11]-{12]. The concept of augmenting
the Jacobian matrix is generalized by Seraji [13], allowing the utilization of the redundancy for
achieving a variety of objectives [14]. The augmented Jacobian approach has the feature of making
the motion cyclic, which is desirable for repetitive operation, and presents an advantage over the
psendoinverse approach. Towever, augmentation introduces additional singularities which cannot
be easily characterized and which aggravate the singularity problem associated with revolute joint
manipulators. Desired Cartesian trajectories passing in the neighborhood of such a singularity
demand very large joint velocities which are impossible to achieve in practice. To overcome the
singularity problem, methods have been proposcd [6], [15] that reduce the joint velocities at the cost
of introducing or increasing the mismatch between the computed and the actual inverse Jacobian
matrix. Such a mismatch produces errors in position and orientation when attempting to control
the manipulator.

Motion control of a redundant manipulator can be implemented in a hierarchical scheme using
either of the above two approaches to the redundancy resolution. In such a scheme the joint angle
trajectorics are generated to achieve a desired end-effector motion, as well as achieving additional
objectives offered by extra degrees of freedom. The generated joint angles are then used as the set
points of the low level servo-loops. Such a hierarchical scheme is particularly attractive in practice
since most industrial manipulators have high performance servo-loops that readily accept joint angle
set points but cannot easily be modified to implement joint torques in a non-hierarchical scheme. A
joint space trajectory generator using the feedback control approach was originally proposed in [16],
and extended to redundant robots in [17]-[19] within the framework of the pseudoinverse approach
and in [20] using the augmented Jacobian approach.

Regardless of the approach used to resolve the redundancy and to overcome the singularity prob-
lem, the computations involved in motion control of a redundant manipulator can be excessive.
Motion control using the pseudoinverse approach requires computation of the Jacobian ‘pseudoin-
verse, its null space matrix, and derivative of an objective function at every control cycle. Similarly,
motion control wsing the augmented Jacobian approach, requires determining the Jacobian matrix
associated with user defined kinematic functions, and the inverse of a higher dimensional augmented
Jacobian matrix at each control cycle. These intensive computations can make real time implemen-
tation of motion control on a practical redundant manipulator impossible.

In this paper we propose a general approach to the redundancy resolution which retains the essen-
tial features of both the pseudoinverse and the augmentation methods, and which reduces to either
method as a special case. Within the framework of this general approach, an adaptive kinematic
control scheme is developed for trajectory tracking that requires only a crude estimate of the inverse
Jacobian matrix, and thus allows very infrequent computation of the inverse or the pseudoinverse
matrix. This results in considerable computational savings and makes real-time implementation of
the scheme feasible on a practical redundant robot. The kinematic control scheme also achieves

high tracking accuracies and acceptable joint velocities even when the manipulator passes through




a singularity.

2 Adaptive Kinematic Control

Consider an n jointed robot manipulator performing tasks in the operational space. The
relationship between the m, x 1 end-effector position and orientation vector X, , and the nx 1 joint

space vector @, where m, < n, is given by the forward kinematic map

Xe=[(9) (1)
The corresponding relationship for velocities is

X, =J.(0)0 (2)

where J.(@) = %g— is the m, x n Jacobian matrix of the end-effector. The problem of kinematic
control of a redundant robot is to determine the joint angle vector ©(f) to achieve a desired end-
effector trajectory vector X 4(t), and to utilize the redundancy offered by r = n — m, extra degrees
of freedom to perform additional tasks. In the pseudoinverse method of redundancy resolution, the

joint velocity vector O(1) is related to the end-effector velocity X, by
(1) = G(O)Xo(t) + 1(In — G(0)J(0))Z (3)

where G.(©) = J}(0) is the pseudoinverse of J () satislying JGeJe = Jo, JeGe = G, (GeJe) =
J.G, and (J.G.)! = G.J., and the argument © has been dropped for convenience. The scalar v is
a positive weighting factor, and 7 is an arbitrary n x 1 vector that has no effect on the end-effector
motion due to the fact that it is multiplied by the null space of J.. In the pseudoinverse method, this
vector is generally set to the gradient of an objective function ¥(0) for the purpose of optimization,
that is 7 = %. In the generalized aurgl‘hexﬁ{tation method proposed by Seraji [13], r additional
kinematic functions X, = f.(©) are defined to resolve the redundancy. These functions are chosen
to reflect the desired additional tasks to be performed. The r x n Jacobian matrix of additional tasks
Ja(Q) = %% is augmented with the m, x n end-effector Jacobian matrix J. to form an augmented
n x n Jacobian matrix. The manipulator now becomes non-redundant. The generalized augmen-
tation method has the advantage of letting the user easily define additional kinematic functions
and making the motion cyclic. However, the utilization of redundancy for optimization, although
theoretically possible within the framework of the augmented Jacobian method, is computationally
very intensive. This is due to the fact that the Jacobian matrix must be augmented with the matrix
Ja = 366 (NT%), where N = (I, — G¢J.) is the null space of the end-effector Jacobian matrix.

In general, a redundant manipulator can be utilized for achieving two types of tasks. The first
type, which we will refer to as the primary tasks, are those tasks that can be expressed by a set of
kinematic equality constraints that must be satisfied accurately. Examples of such tasks are tracking

an end-effector trajectory, and maintaining an elbow height or a shoulder angle at specified values for



the achievement of a certain objective. The other type of tasks, or secondary tasks, involve realizing
a performance criterion as best as possible, for example, optimizing a performance criterion to avoid
joint limits. These tasks do not need to be accurately monitored or tightly controlled, and an
approximate optimization is generally acceptable. Tn the augmentation method all additional tasks
are treated as primary tasks that must to be achieved accurately. An excessive number of primary
tasks will result in the difficulty or inability in achicving these tasks. On the other hand, in the
pscudoinverse method, the tasks are formulated in the form of an optimization criterion, whith may
not be the most practical or natural way of expressing and solving a particular kinematic problem.

To ecase these trade-offs, we propose a method for combining augmentation and pseudohverse
approaches, thereby permitting a more natural formulation of both kinds of tasks. Speciﬁcé_lly, let
0 < ro < r degrees of redundancy be used for the user defined tasks described by the r4 x 1 vector

equation X, = f.(©), where X, is the additional task vector. The augmented system of kinematic

= (3)=(48)

where X is an m x 1 vector, m = (m, + r,), and will be referred to as the “posture” vector. This

equations is

vector is composed of position and orientation of the end-effector, and possible additionalkinematic
functions that define Cartesian or angular position of the arm such as elbow height or distance of

points on the arm from obstacles. The equation relating N toOis
X=1JO C(5)

where J = j; ) is the m x n augmented Jacobian matrix. Similarly, let 0 < r, £ r degrees
of freedom be utilized for optimization of a performance criterion ¥(0), where r = r, + 1;‘0 The
optimization criterion can be manipulability maximization, joint limit avoidance, minim'z:l joint
motion or obstacle avoidance, to mention a few. Equation (3) can now be used to obtain the joint
angle trajectory vector O(t) for achieving both a desired posture vector X4(¢) and optimization of

the performance criteria ¥(0). This gives
t "
o@) = / (G',Yd(t) + (I, - GJ)Z) dt - (6)
0 . -

where G = J1(B®) and Z = g% . Tt is evident that when r, = 0, the method reduces to the purely
augmented Jacobian matrix method. Likewise, when rq = 0, it reduces to purely pseudoinverse
method.

Equation (6) is of little practical use since the integration can drift away even with small inac-
curacies in the knowledge of the kinematic parameters or the computation of the Jacobian matrix.
It will also produce undesirable behavior when the manipulator passes close to ;a,singularity. It
is, therefore, important to develop a scheme that is robust with respect to robot singularities or

inaccuracies in the estimation or computation of the Jacobian matrix. The latter is very important
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Figure 1: Block diagram of the overall scheme.

since the computation of the Jacobian inverse or the pseudoinverse must be performed very infre-
quently to reduce computational burden. Such infrequent computations generate inaccuracies in
the inverse Jacobian matrix and are reflected as errors in the manipulator position and orientation.
In order to resolve these difficulties, the feedback control scheme of Figure 1 is employed, where
E(t) = X4(t) — X(t) denotes the error between the desired and actual posture vector. The controller
consists of an adaptive time-varying feedback gain matrix K(t) acting on the error and a matrix G
that represents an estimate of the pseudoinverse Jacobian matrix ¢/ = J1. The estimate G can be
considerably different from the actual G, although a good estimate reduces the controller gain, as
will be seen. As we discussed earlier, our objective is to achicve accurate tracking ol the end-effector
and the additional tasks as defined by the desired value of the posture vector Xg¢(t), while attempt-
ing to satisfy the secondary tasks as best as possible. Consequently, the error in the posture vector
is directly controlled, whereas the optimization is indirectly realized. Figure 1 indicates that the

required joint angular velocity vector O(t) can be obtained from
o) =G (,\"d(t) + [\’(t)E(!)) (I, — G2 (7)

where J is an estimate of the Jacobian matrix. The problem is now to determine K'(1) to ensure that
the posture vector X(t) closely follows its desired value X4(2) so that the error F(t) is arbitrarily

small. Premultiplying (7) by J and substituting the result into (5), we obtain
X(t) = JG [Xa() + KOEW| +47(I - )2 (8)
Subtracting both sides of (8) from X4 and rearranging yields the error dynamic equation
E() = —JEKOEW) + (Im — JOYX4(t) = vJ (I, - CJ)Z (9)
Let us define the mismatch between the actual and estimated Jacobian matrices as '

H=1In-JG (10)



In the ideal case where J is known accurately and rank J = m, the mismatch matrix s o=
Iy = JJT(JJT)~t = 0, and there is no mismatch. Substituting (10) into (9) and simpli‘fying, we
obtain

E(t) = =K(O)EW) + HK(OEQ) + HX4(t) =y 2 (11)
where | = (J — )+ 11J is a modified mismatch matrix and has the property that /f; = 0 whenever
the original mismatch matrix /1 is zero. The term y/7; 2 is in fact the interaction of the secondary
task on the primary task error dynamics. When [T = 0, (11) simplifies to £(t) = —K(t) E(t). In
this case the nonlinear system (11) is reduced to a simple linear system, which partially explains
the reason for using the feedback configuration of Figure 1. Tt is easy to show that in the case of
zero mismatch, lim,_, . £ = 0, provided that K (¢} is a symmetric positive definite matrix. However,
there will always be a mismatch because of the imperfect knowledge of the robot parameters, the
inaccuracies due to infrequent calculations of the inverse Jacobian matrix, or the robot operating
near a singular point. It is, therefore, desirable to develop a posture trajectory tracking algorithm
that will be robust to both inaccuracies in the Jacobian matrix calculations and robot singularities.
In the next section, we will show that the control algorithm (7) with K (7) designed as an adaptive

proportional plus integral controller will achieve these objectives.

3 Stability and Tracking Performance

Consider the proportional plus integral feedback matrix
K() = Kp + K,(t) (12)
where Kp is a constant positive definite symmetric matrix, and K;(¢) is obtained from an integral
adaptation algorithm as
Ki{t) = Ko + /t (QE(T)ET(T) — oK (7)) dr (13)
0

where Kp is a constant positive definite symmetric matrix representing the initial value of the
integral, @ > 0 is the constant integral coefficient, and o > 0 is the leakage coeflicient used to avoid

possible integral wind up [21]. Equation (13) implies that
Ki(t) = a EQET(t) — oK (t) (14)

Note that K(t) is a positive definite symmetric matrix for all ¢. In order to show that the error
E(t) described by the dynamical equations (11) and (14) can be made arbitrarily small, we consider

the Lyapunov function candidate
1 1 . . .
V= §ET(t)E(xz) togtr (KT ()R (1)) (15)
whose derivative along the trajectories of (11) and (14) is

. . 1 .
V=-ETKE+ETHKE+ETHX,—~E"H\Z + i (K,TK,) (16)



where the time argument is dropped for convenience. Substituting for K and K from (12) and (11)

into (16) and simplifying, we obtain

. 1 .
V=-ET ((1 - =)+ I{p> E+ETHKE+ ETHXq~+ETILZ - % v (KFK) (1)

Suppose that the coefficient o is chosen such that o > I, and let ky = Amin (Kp +(1 - %)[\';),
and ko = Aoz (K), where Apin and Apg: denote the minimum and the maximum eigenvalues of a

matrix, respectively. Equation (17) implies that

V< ki ||E|2 + k| HIEN? + ET (IL\"d . Z) - Z tr (KTK) (18)
2
Let 4 = maxz(||H]]), m = maz(|{I11}}), { = maz (|| Xal}), and p = maz(]|Z])). We have in the worst
casc .
: x o ST e
V<-hk (1 - L—fn) LEI® + (n¢ + ym )| Ell - — tr (K7 K1) (19)

In order to prove the stability of the error dynamics, we will assume that 5 < %; < 1. This
assumption places an upper bound on the mismatch. It must be noted, however, that this upper
bound is resulted from the worst case nature of the analysis, and that in practice the scheme often

accommodates larger mismatches, as will be demonstrated in Section 4. Let

k
k=k <l—ﬁrl> iog=n¢+ymp (20)
to obtain from (19)
V <~k BN+ qllE -~ =5 tr [KTK7) (21)

Substituting for |[E||? = 2V — Z5 tr (KT K;) from (15) into (21) and dropping the negative term

— L tr (KT K;) appearing under the radical in the resulting equation, we obtain

. -k
V< -2kV 4+ qveV — (002 ) tr (KT K1) (22)
Now if the leakage coefficient is selected such that o > k, then (22) reduces to
V < -2V 4+ qV2V (23)

Note that the choice of ¢ > k is very conservative due to the fact that the negative term was dropped
above and that in practice a much smaller value of o is sufficient to ensure the validity of inequality
(23). This inequality is now in a form that can be solved analytically by defining

W=V - 7_"27 (24)

which yields
(25)



Substituting (24) and (25) into (23) and dividing both sides of the resulting inequality by 2v/V > 0,

we obtain

W < —kW (26)

The solution to (26) is
W(E) < W (E(ty))e *t-te) (27)

where tg is the initial time. In view of (24), the last inequality becomes

V(E) < [e_k(‘_'“)\/V(E(ln)) + (1 ~ g Hi-t) %r (28)

It is easy to verily that V{I) dccreases monotonically along any solution of the error dynamic

equations (11) and (14) until the solution reaches the compact region

Ry = { E:V(E)<V) = 2”:2} (29)
where the subscript f denotes the final values, that is as t — oco. The rate of decrease of V(FE) is
at least as fast as e~ ¥, We conclude that the solutions F of (11) and (14) are globally ultimately
bounded . Since from (15) we have ||E||? < 2V, it follows that within the region R, given by (29),
the error is bounded by ' 7

<1 (30)

Equations (30) and (20) indicate that the upper hound on the steady-state tacking error is related

£

to the accuracy of the inverse Jacobian matrix estimation, the desired velocity of the posture vector,
and the controller gain. The adaptive nature of K croupled with a reasonable estimate of the inverse
Jacobian allows the achievement of very low tracking error with small or moderate controller gains.
Extensive simulation results have shown that even when the estimate of the Jacobian matrix is
significantly different from its actual value and the end-effector moves fast, the error can be made
very small by increasing the controller gain k. The latter can be achieved using higher values of the

integral coeflicient a and the constant matrices Ky and Kp.

3.1 Discrete-Time Implementation

In practice, the adaptive trajectory generator algorithm described by (7), (12) and (13) is

implemented in discrete time. Using the trapezoidal integration rule, the discrete form of (13) is

A = .
Kpn=Ky+ EC. [LY (EjE}‘-i-Ej_*.lE};l) —0'([(11' +Ii[(j+1))] (31)
. o -~ . J=0
where T}, is the control sample time and Kj; and E; denote , respectively, the values of the adaptive
matrix K(¢) and the error vector E(t) at timet = iT, i = 0,1,2,... . As with any discrete time

feedback systems, the tracking performance deteriorates when 7, is increased. Equation (31) can be

written in a computationally more convenient form as

1 . ~
Kpi= (1—3)50_7‘) [(1 = 050 T) K i1y + 0.5aT(EET + Ei 1 EL,)) (32)




Similarly, the discrete form of the control law (7) using the trapezoidal integration rule is
T. :
0; = 'i—l+?(Qi+Qi—l) (33)

where

Q; = (:7,' (4\.’(1,' + K; [b‘,‘) + “;‘(’,, - é,‘j,’)Z,’ . (34)

where the subscript i denotes the values at time ¢ = iT.. The above control law requires an estimate

. - - . . . LY 2
of the Jacobian pscudoinverse matrix G;. An efficient algorithm to calculate the Jacobian matrix J;

is given in [22]. The estimated pseudoinverse matrix is obtained from J; as
. ST /s 2T\"} .
Gi=J; (JiJi ) (35)

where the pseudoinvere in (35) minimizes H\, — ],(—),H This procedure will provide a reasonably
accurate estimate of the pseudoinverse, that is G =~ G. Nowever, it has two main drawbacks, namely
computational intensity and excessively large values of G, and consequently of joint velocities, near
the robot éingularities. In order to resolve the problem of excessive joint velocities near Lhé robot

singularities, we estimate the Jacobian pseudoinverse to minimize
{1 = T Ol + B 11€:l1 ) (36)

where the value of 8 > 0 determines the weighting placed on the minimization of joing velocity

errors. The inverse Jacobian matrix that realizes (36) is [G]
Gi= 27 (5 1T+ D)7 NCT))

Note that the inverse in (37) exists even when the manipulator is at a singularity. The weighting
factor A can be adjusted to have a small value near robot singularity, and zero clsewhere. One

method to achieve this is to choose § according to

_ Wy
8= {»’30(1 wo) , w< wo (38)

; w 2> wWo

where w = m is the manipulability measure, fy is a constant and wyq is a specified threshold.
A more elaborate technique for the selection of 3 is based on singular values of J; [3]. The addition
of the term BI in (37) introduces mismatch in the Jacobian pseudoinverse and can produce tracking
errors. However, the proposed adaptive kinematic scheme is robust with respect to the misrnatch and
will automatically increase the gains to the level that is needed to achieve good tracking perfo,rma.nce,
as discussed before.
A major portion of the computation in each control cycle is the calculation of the Jacobian matrix
and its pseudoinverse. In order to significantly reduce the computational burden, the calculation of
“the Jacobian matrix and its pseudoinverse are performed, merely once every Ty = vT, seconds, where

v > 1 (typically 100) is an integer. This implies that the costly computation of the Jacobian matrix



and its psendoinverse are performed only a few times during a typical robot motion. Furthermore,
to account for the delay time that occurs due to the computation of (7, we introduce a vT; second

delay in the implementation of the scheme. Equation (34) is now
Qi = Gy (t\".ﬁ + K; /*7;) + Ty = G i) Z (39)

where G- is the value of G at time t = (I = 1)T; = (I = \WwT,, | = 1,2,3,--- . Because of
the robustness of the adaptive kinematic algorithim to the Jacobian mismatch, accurate tracking is
possible despite the mismatch which is brought about by both the infrequent updating of Jacobian

pseudoinverse and the computation delays. This will be demonstrated in the next section.

4 Examples

In this section, the adaptive joint space trajectory genéfator developed in the previous sections
will be applied to two examples. In the first example a modified PUMA 562 is utilized to demonstrate
the redundancy resolution using the proposed adaptive kinematic control method. In the second
example, the kinematic model of a regular PUMA 562 manipulator is used for both position and
orientation tracking while the robot passes repeatedly through singularities. The control sample

time is selected as 7. = 2ms in all cases,

4.1 Examplel

In this example we investigate the performance of the adaptive scheme for trajectory tracking
of a modified PUMA 562 manipulator. The PUMA is made redundant by adding an extra link to
its wrist, as shown in Figure 2. The joint angles to be used are waist 0y, shoulder 82, elbow 03,
and wrist angles 84 and 05. Joint § provides rotation of the extra link and will not be used in this
example. The modifiecd PUMA is now a redundant for positioning the tip of the extra link in the
three dimensional space. The kinematic equations of the modified PUMA, which has two degrees
of redundancy, are given in the Appendix. In the following we will study two cases, where in both

cases the tip is required to move on a straight line in the Cartesian space. The desired position

trajectory is described by
Xea(t) = X.(0) + (Xe(o0) = X.(0)) 4(0) (10)

where X.(0) and X(co) are the initial and final values of the tip position vector, and g(.) is a
cycloidal function of the form

v 1 . 27v 0<v<
gv)y = 777 MM SV=T (41)
1 o >T

where 7 is the time required to move the tip from its initial position X(0) its final position X (00},

and is selected as 7 = 25. Note that (40)-(41) describe the equation of a straight line in the Cartesian

10



coordinates. The starting joint angle vector is selected as ©(0) = (=45, -20, -5, 0, SO)T_degrccs.
These correspond to the tip Cartesian position X (0) = (340, —130, 810)T mm . The final position
of the tip is specified as X, (00) = (500, 500, 500)7 mm , and the Cartesian distance to be traveled

is D = [|X.(00) — X(0)]] = 720 mm.

4.1.1 Case A

In this case study, combined augmentation and optimization are utilized for the resolution of
the redundancy. In addition to the tip trajectory tracking, it is desired to decrease the elbow height
linearly from the starting value h(0) = X.(0) = 150 mm to reach a value of h(o0) = X4(c0) =0
at time { = 1s. This height is to be maintained to avoid collision with an obstacle while the tip
continues its motion to get to the goal position at time t = 7 = 2s. The desired elbow height

trajectory is

Xaa(t) = Xa(0) + (Xa(20) = (Xa(0)) 9(20) (42)

where g(.) is given in (41). The desired posture vector is obtained by augmenting the tip position

vector and the elbow height as

xut) = (340 ) = e, 220, 2au0), 2aa0)” (13)

where the first three components describe the Cartesian coordinates of the tip position, and the last

component, x44(t), is the desired elbow height trajectory.
In addition to the above specifications and in order to avoid joint limits, it is desired to keep
each joint angle 8;, j = 1,2,---,5, as close as possible to its center value 8;. = ﬁ%fli, where 0;4

and §;; are the upper and lower limits of the joint angle 0;. This is done by maximizing the function

5 /9. — 0. \°
¥(0) = - T 11
©=-3 (4 (11)
i=1

where 8;, = g"‘T"GA is the span. The set of pairs (f;,0;y) for joints 1 to 5 of the PUMA are,

respectively, (—160, 160), (—223,43), (-48,236), (-110,170) and (-100, 100} degrees.
The control algorithm (32), (33) and (37)-(39) are applicd in which the gain matrix K(1) is
adapted with Kp = Ky = 0, a = 10° and o = 0.7, so that only integral adaptation with a

leakage term is employed. Note that the large value of « is due to the fact that the errors Ej

1

and the sample time T, in (32) are measured in meters and seconds, respectively. *. The values

of A = 0.007 and wg = 0.015 are used in (38). The pseudoinverse Jacobian matrix is computed
every Ty = 100 ms. This means that for every 50 control cycles only one pseudoinverse Jacobian
is computed. In addition, to account for the delay in computation, a one sample delay of Ty is

introduced in the calculations of the Jacobian pseudoinverse matrix, as discussed hefore. Thus the

1 Although the results are given in millimeter, milliseconds and degrees, the actual computations are performed
with units in meters, seconds and radians

11



pseudoinverse being used for computing of the joint angles is out of date by as much as 200 ms,
which can produce large mismatch. i

The arm motion is shown in Figure 3 . The actual tip position trajectories (z1(¢), z2(¢), z3(1))
and the elbow lieight trajectory z4(t) closely follow the desired trajectories (z14(t), z24(t), z34(2))
and z44(¢), respectively, as seen in Figurc 4. The errors ¢ (8) = z14{t) — z1 (1), e2(t) = zaa(t) — z2(1),
es(t) = zaa(t) — x3(t) and eq(t) = z44(t) — z4(t) are plotted in Figure 5 and indicate maximum
errors of 1.0 mm, 0.7 mm, 0.6 mm along the three axis, and 1.05 mm in the elbow height. These
maximum errors are very small compared to the traveled distances shown in Figure 4. The average
errors are less than 0.3 mm. Tt must be noted that the above low tracking errors have been obtained
despite relatively fast trajectories and infrequent Jacobian matrix compntation. The joint angle
trajectories to achieve the above motion is shown in Figure 6. The joint angles have been kept as
close as possible to their center values through the optimization of the performance criterion. It
is interesting to note from Figures 3 and 6 that the arm continues to change posture to further
optimize the performance criterion even at the completion of the tip trajectory. This is done while
keeping both the tip at the position X, (c0) = (500, 500, 500)7 mm and the elbow at the height of
Xa(e0) = 0. The optimization can be speeded up and distributed more evenly throughout the arm
motion by increasing the value of v in (15).

Suppose now that to further reduce the computations, the Jacobian pseudoinverse matrix is
initialized correctly, but is not updated at all, that is 77 = co. The norm of the mismatch matrix,
||£1]], is plotted in Figure 7 and indicates a maximum mismatch of n = max||H || & 2.8 which exceeds
the conservative limit of 1 used in the proof of stability. Despite this, the error responses plotted
in Figure 8 show a maximum error of only 1.3 mmm, 0.8 mm and 1.3 mm in the three coordinates
of the tip position and 0.3 mm in the elbow height. These error are only slightly higher than those
obtained with 100 ms updating. Tt is seen that despite suspension of the Jacobian comtutations,
which has resulted constant Jacobian matrix through the entire motion, the scheme has tracked the
desired trajectories accurately. This has been achieved mainly due to the adaptive control scheme.

Finally, let us quantify the computational savings as a result of infrequent updating. Let the CPU
time required to compute the joint trajectory vector © for one control cycle with Jacobian updating
timesTy = T. = 2ms, Ty = 100ms and Ty = oo be denoted by ta, t1pp and too, respective]y.- Using a
Sun computer it is found that for the present example, £y = 6.5 ms, ;90 = 1.06 ms and 1, £ 1.00 ms.
These results reflect the computational intensity involved in the Jacobian pseudoinverse calculations
despite using an efficient algorithm {23]. The results also indicate considerable CPU time savings due
to infrequent updating of Ty = 100 ms. Although the adaptive scheme can tolerate no pseudoinverse

updating, only little extra savings is obtained using Ty = oco.
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4,1.2 Case B

The purpose of this case study is to show how both extra degrees of freedom can be used for
augmentation, and to further demonstrate the robustness of the algorithm.

Consider the manipulator where the tip and the elbow are required to track the trajectories as in
Case A. In addition, these tasks are to be performed while freczing one wrist joint angle tov.'.;x value
of 04 = 45° to represent the case of a joint motor failure. The additional task vector is now the 2 x 1
vector X, = 1) Wwhere x5 = 04, and the posture vector is X = (X, X)T = (21, 22, -, zs)T.

5

All parameters are left at their values as in Case A. The error responses are shown in Figures 9
and 10 and indicate low tracking errors in all components of the posture vector. The maximum
Cartesian error occurs in z; with a value of e} = 0.9 mm, and the average error is less than 0.4 mm.
The maximum wrist angle deviation from its frozen value is 0.6 degree. The joint angles trajectories
to achieve the above tasks are shown in Figure 11, and reach their final values after about 25 when
the desired trajectorics are their steady-state values. Comparing Figures 11 and 6, we observe that
the joint angles in Figure 11 are farther away from their center values because no optimization is
performed in Casc B. The arm motion is depicted in Figure 12 and further illustrates this point.

If the inverse Jacobian matrix is not updated, the maximum Cartesian error is found to be
1.05 mm, and the maximum wrist angle error is 0.3 degree, which are about the same values with
Ty = 100 ms. The CPU times for one control cycle computation are {3 = 6.0ms, {100 = 0.80 ms
and to, = 0.62ms for Jacobian update times of 2ms, 100 ms and oo, respectively. These values are
close to those obtained in Case A, and further illustrate the significant CPU time savings as a result

of infrequent updating.

4.2 Example 2

The purpose of this example is to demonstrate the capability of the adaptive scheme to perform
both position and orientation trajectory tracking in the standard PUMA 650 robot in the difficult
situation where the manipulator is required to perform a complex motion that passes through a
robot singularity repeatedly. Orientation trajectory tracking is generally hard to achieve due to
the presence of many singularities associated with the wrist. The end-effector vector is denoted
)T where 1, z3 and z3 are the position components, and z4, 5 and z¢

by X = (z1, z2, -+, %s
are the orientation components. Tere, all degrees of freedom are used for the primary tasks. The
end-cffector coordinate vector X is related to the angles of waist 8y, shoulder 0,, elbow 0’3, and the
three wrist angles 04, 05 and fs through the forward kinematic equations given in the Appendix.
The orientation is described by the equivalent axis representation [24].

The desired end-effector trajectory is selected as shown in Figure 13. The PUMA manipulator
starts at 0y = 0, = 03 = 04 = 0 = 0, and 65 = 30° with the corresponding end-effector position
(zy, T2, z3)7 = (440, 149, 481)7 mm, and the orientation (z4 , Zs ,z6)T = (0, 30, 0)T degrees.

The end-effector takes a partial spiral path until it reaches a tilted circular path of a specified radius.
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It then continues its motion on this circular path repeatedly. The desired end-effector orientation is
such that it holds an object upward (e.g. holds a glass of water without spilling the water) while the

tilted path is traversed. In order to specify this tilted spiral-circular motion, we defined the rotation

matrices:

1 0 0 cosys 0 sines
Ri=1] 0 cosp; —sing i Ry = 0 1 0 (45)
0 sing; cosyp —sing; 0 cosgg )

where ¢ and ¢, are angles of rotation about z; and z axis, respectively. Now we form the position

and orientation vectors p and and ¢ as

r sin(2d) za(oc) — 24(0)
p(t) = RaRy | 7 cos( :ld} i g= | zs(c0) — 25(0) (46)
0 2g(20) — 25(0)

where d = 41 specifies the direction of rotation. Note that p(t) describes the equation of a circle

that is rotated about axis z; and zs. The desired trajectory vector is now
. )
Xq(t) = X(0) + ( ’q ) g(4t) (47)

where g(.) is given in (41), and has the effect of smoothly taking the end-effector from the starting
position and orientation .X(0) into a spiral path and finally to a circular path with the desired tilt.
The parameters in (45)-(46) are selected as ¢ = 35 degrees ¢ = 20 degrees, r = 300mm, r =55
and d = —1.
~ The parameters are Ko = Kp=0,a= 107 o =15 s =0.01, wg = 0.025 and the Jacobian
matrw update time is Ty = 100 ms. The det(’rmmant of the Jacobian matrix is shown in Fxgure
14, and clcarly changes sign, showing that the mampulator passes through a smgulanty repeatedly.
The position and orientation errors are given in Figures (15) and (16) . The maximum position and
orientation errors are about 3.5 mm and 0.7 degree, and occur along 1 and x4, respectively, and
occur at the singularity point. The joint velocities are plotted in Figure 17 and show a maximum
value of less than 120 degrees/s as the arm goes through singularities. It is seen that Hespite
infrequent Jacobian updating and the complex manipulator motion passing through singularities,
the adaptive kinematic control scheme has produced low crrors and velocities. The CPU time savings
due to infrequent updating is again significant in this case with {; = 7ms and {190 = 1.0 ms.
It must be emphasized that the above two examples demonstrate typical performance of the
proposed adaptive scheme. Similar results were obtained for a wide range of desired trdjectories
with different velocities and with very infrequent Jacobian pseudoinverse computationg i Higher

tracking accuracies are achieved by more elaborate tuning of the controller parameters Kp, Ko, «
and o. ) - .
Fma]ly, the scheme was lmplemented on both (he standard and modified PUMA 562. The
control software was written in the C language on a 486 PC. A serial link was established for the
communication between the higher level adaptive controller residing on the PC and the PUMA joint

level controller. Several examples similar to the above were successfully implemented.
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5 Conclusions

A method is proposed for redundancy resolution that generalizes Jacobian pseudoinverse and
augmentation approaches. The method is flexible and allows the user to easily define tasks involving
trajectory tracking and performance optimization. An adaptive algorithm for solving the ‘inversc
kinematic problem of redundant robot has been presented which uses a feedback loop with an adap-
tive controller to generate the joint angle trajectorics for achieving desired end-effector trajectories,
as well as other desired posture trajectories defined by the user.

It is shown that the errors in posture trajectories are globally ultimately bounded for different
velocities and bounded uncertainties in the estimation of the Jacobian pseudoinverse matrix. This
robustness allows very infrequent pseudoinverse computations and make the scheme computationally
fast and suitable for real-time implementation. A further feature of the scheme is its tolerance to
manipulator singularities and allows the robot to go close to or even pass through singularities while
maintaining acceptable joint velocities and low tracking errors.

The scheme has been applied to a practical redundant robot for achicving both trajectory tracking

and optimization and the results show the effectiveness of the scheme under a varicty of conditions.
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7 Appendix - Forward Kinematic Equations

In this appendix we present the forward kinematic equations of the five DOF redundant ma-
nipulator used in Example 1, and the 6 DOF PUMA 562 used in Example 2.

Consider the forward kinematics of the modified PUMA 650 manipulator shown in Figu}‘e (ref-

finarmpic.ps). Let 0, 02 and 03 be the waist, shoulder and elbow joint angles, respectively, and use

the standard notations ¢ = cos#, sy = sinly, cy2 = cos(#) + 02), etc. The shoulder position vector

Psh 1S
—(1131

psh=| dicy © (48)
0

where d; = 149.1 mm is the base to shoulder length . The unit vector az = n’;—:—:-” defines the

reference axis for 5. The elbow position vector is

lycrey — lzeaacy
Pel = Psh + l3s1¢2 (149)
—lysy + 13523

where I» = 432 mm is shoulder joint to elbow joint distance and I3 = 20.3 mm is the elbow oflset.

The elbow height is h = —I3s3. The wrist position is
d4c1503
Pur = Pel + v = pa+ d-151523 . (50)
(14C23 ’

where d4 = 432 mm Is elbow to wrist length. The unit vector aq = ":'—" defines the reference axis for
0;. To find as, the unit vector for 5, we note that due to the PUMA 562 geometry, as is parallel
to a; when the manipulator is at "home” position and 5 is zero. Consequently, the unit vector as
is obtained as as = rot(f4, aq) az where rot(f4,a4) is the matrix representing the rotation about the

vector a4 by 04, and is obtained from
rot(04,a4) = C4I + (l has C.q)(l(;(lr + 845((14) (51)

where S(.) is the skew symmetric operator defined so that for two vectors a and b, a x b = S(a)b.
Since ag, the reference axis for joint g, is parallel with a4 when 05 = 0, we have ag = rot(fs, as)aq

which rotates a4 about as by 5. The position of the end-effector mounting plate is
Pe = lsag + pur (52)

where Is = 57.2 mm is the wrist to plate length. When the extra link is mounted on the end-¢ffector

plate, the tip position of this link is
Xip = (15 + 16)“6 + Pwr A (53)

where Ig = 250 mm is the length of the extra link.
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The orientation of the plate is determined using the equivalent axis representation [24}. This

requires computing the rotation matrix
R = rot(0s, ag) rot(0s, as) rot(84,aq) rot(0s + 05, a4) rot(0y, a;) (54)

Note that az = a3 since the axis of rotation of joints 2 and 3 are parallel. Given the rotation matrix

R, the angle of rotation ¥ and the axis of rotation & are obtained from [24]
1!
J = cos —2-(1'11 + rog 4133 — 1) (55)

where r11, -, 733 are the elements of the rotation matrix R. The end-effector orientation is*

T3 — T'23
$pe=w| ra—ra |, 9<r—¢ (56)
T2y — T2 [
where ¢ is a small number and
' Y
—, e<V<T—¢
w = flzsm v (57)
5, 19 S € .

In order to determine ¢, for 4 > 7 — ¢, let u; = 1/5“#, uy = \/522,_;*—1, and u; = 1/-’—“,?’—1. Then it
ra .

Uy 2uq M
can be shown that [26] ¢, = ¥ 7'_;',‘,11 ) ford>nm—cand [uy| > € ¢ =0 up ford > 7 —e¢,
Tia a3 .

2u, 2uz

FE

u

-
e

lu| < € and |uz| > €; and ¢, = U for all other values of ¥. Finally, the end-effector

L~

u

w

3

u
position and orientation vector is X, = ( ge )
e
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